EXECUTIVE SUMMARY

Thank you for your continued hard work sampling **Pearly Pond, Rindge** this year! Your monitoring group sampled the deep spot **three** times this year and has done so for many years. As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the great work!

The New Hampshire Department of Environmental Services (DES), in conjunction with the U.S. Environmental Protection Agency (EPA) and the environmental consulting firm ENSR, conducted a Total Maximum Daily Load (TMDL) for total phosphorus for your pond. The TMDL refers to the pollutant reductions a waterbody needs to meet New Hampshire's water quality standards. Pearly Pond was listed on the 2008 impaired waters [303(d)] list because elevated algal growth impaired the primary contact recreation (swimming) use. Phosphorus is the nutrient responsible for algal growth and is the pollutant to be reduced to control algal growth. DES is required by the Federal Clean Water Act (CWA), Section 303(d), to report every two years to the EPA on all waters not meeting state water quality standards.

The TMDL conducted at your pond identified an in-lake target phosphorus value that, when met, should result in no additional primary contact recreation impairments due to algal growth. A phosphorus budget was constructed, phosphorus sources identified and phosphorus reductions allocated to each of the sources to meet the target value. An implementation plan provides recommendations on watershed remediation activities to reduce phosphorus inputs to the pond.

The draft TMDL will be provided to your pond association, town, and watershed stakeholders for review and will also be available on the DES website at www.des.nh.gov/organization/divisions/water/wmb/tmdl/index.htm. There will be a period for public review and comment, anticipated for Summer 2009, where DES and/or ENSR will present it's findings to interested stakeholders. We anticipate a TMDL informational session in conjunction with the annual VLAP Workshop scheduled for May 16, 2009. We encourage your pond association and/or residents to attend the workshop to learn more about TMDLs in general and the TMDL for your pond. Phosphorus load reductions can only occur with the knowledge, participation and action of watershed residents, businesses and stakeholders. If you are interested in participating in an informational session at the VLAP Workshop please contact the VLAP Coordinator at sara.steiner@des.nh.gov or 603-271-2658. If you are interested in learning more about the TMDL Program, or attending additional informational sessions, please contact Peg Foss, TMDL Coordinator, at Margaret.foss@des.nh.gov or 603-271-5448.

A Weed Watcher training was conducted at **Pearly Pond** during **2008**. Volunteers were trained to survey the pond once a month from **May** through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the pond and any islands it may contain. Using the materials provided in the Weed Watcher kit, volunteers look for any species that are suspicious. After a trip or two around the pond, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers immediately send a specimen to DES for identification. If the plant specimen is an exotic species, a biologist will visit the site to determine the extent of the problem and to formulate a management plan to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants.

OBSERVATIONS & RECOMMENDATIONS

DEEP SPOT

> Chlorophyll-a

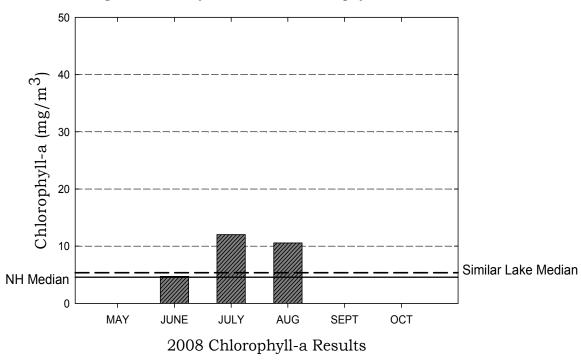
Chlorophyll-a, a pigment found in plants, is an indicator of algal or cyanobacteria abundance. Algae are typically microscopic plants that are naturally found in the lake ecosystem. The measurement of chlorophyll-a in the water gives biologists an estimation of the algal concentration or lake productivity. Table 14 in Appendix A lists the current year chlorophyll-a data.

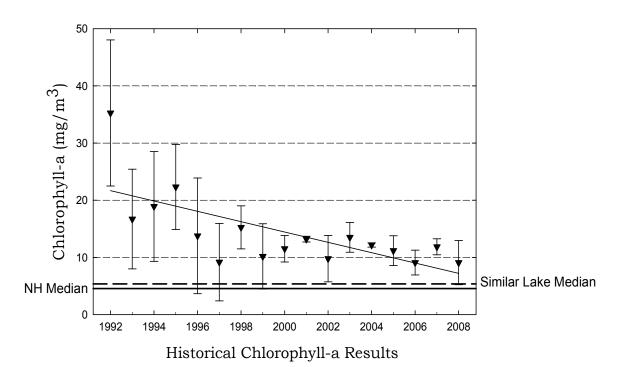
Figure 1 depicts the historical and current year chlorophyll-a concentration in the water column.

The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m^3 .

The current year data (the top graph) show that the chlorophyll-a concentration *increased* from **June** to **July**, and then *decreased slightly* from **July** to **August**.

The historical data (the bottom graph) show that the **2008** chlorophyll-a mean is *slightly greater than* the state and similar lake medians, and was the lowest mean chlorophyll-a concentration measured since monitoring began. For more information on the similar lake median, refer to Appendix D.


Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *improved* since **1992**.


While algae are naturally present in all waterbodies, an excessive or increasing amount of any type is not welcomed. Phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes and ponds. Algal concentrations increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Increased Chlorophyll-a concentrations can also affect water clarity, causing Secchi-disk transparency to decrease (worsen) and turbidity to increase (worsen).

Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

Pearly Pond, Rindge

Figure 1. Monthly and Historical Chlorophyll-a Results

> Phytoplankton and Cyanobacteria

Table 1 lists the phytoplankton (algae) and/or cyanobacteria observed in the pond in **2008**. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed and their relative dominance in the sample.

Division	Genus	% Dominance
Bacillariophyta	Tabellaria	31.4
Bacillariophyta	Asterionella	28.0
Cyanophyta	Anabaena	19.0

Table 1. Dominant Phytoplankton/Cyanobacteria (June 2008)

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.

The cyanobacterium **Anabaena** was observed in the **June** plankton sample. **This cyanobactieria, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans.** Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria.

Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather.

The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the pond by eliminating fertilizer use on lawns, keeping the pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the pond. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator.

Secchi Disk Transparency

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. Table 14 in Appendix A lists the current year transparency data. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

Figure 2 depicts the historical and current year transparency **with and without** the use of a viewscope.

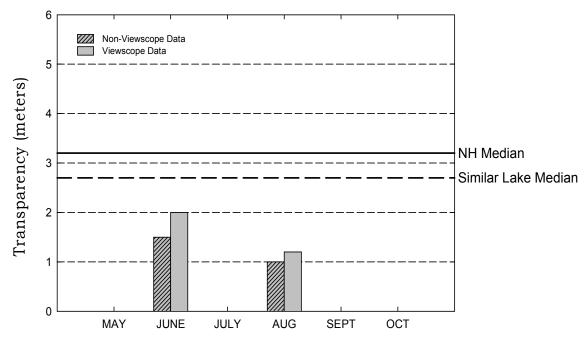
The current year **non-viewscope** in-lake transparency **decreased** from **June** to **August**.

The current year *viewscope* in-lake transparency *decreased* from **June** to **August**.

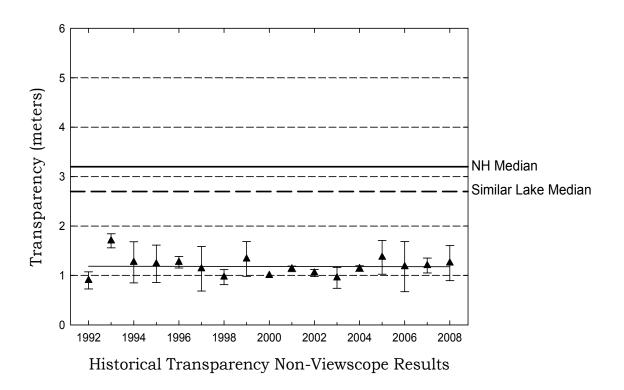
The transparency measured with the viewscope was generally *greater than* the transparency measured without the viewscope this summer. As discussed previously, a comparison of the transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. In the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

The historical data (the bottom graph) show that the **2008** mean non-viewscope transparency is *much less than* the state and similar lake medians. Please refer to Appendix D for more information about the similar lake median.


Visual inspection of the historical data trend line (the bottom graph) shows a **stable** trend. Specifically, the transparency has **remained relatively stable ranging between approximately 0.9 and 1.7 meters** since monitoring began in **1992**.

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.


We recommend that your group continue to measure the transparency with and without the use of the viewscope on each sampling event. Ultimately, we would like all monitoring groups to use a viewscope to take Secchi disk readings as the use of the viewscope results in less variability in transparency readings between monitors and sampling events. At some point in the future, when we have sufficient data to determine a statistical relationship between transparency readings collected with and without the use of a viewscope, it may only be necessary to collect transparency readings with the use of a viewscope.

Pearly Pond, Rindge

Figure 2. Monthly and Historical Transparency Results

2008 Transparency Viewscope and Non-Viewscope Results

> Total Phosphorus

Phosphorus is typically the limiting nutrient for vascular plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a pond can lead to increased plant and algal growth over time. Table 14 in Appendix A lists the current year total phosphorus data for in-lake and tributary stations. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The graphs in Figure 3 depict the historical amount of epilimnetic (upper layer) and hypolimnetic (lower layer) total phosphorus concentrations; the inset graphs depict current year total phosphorus data.

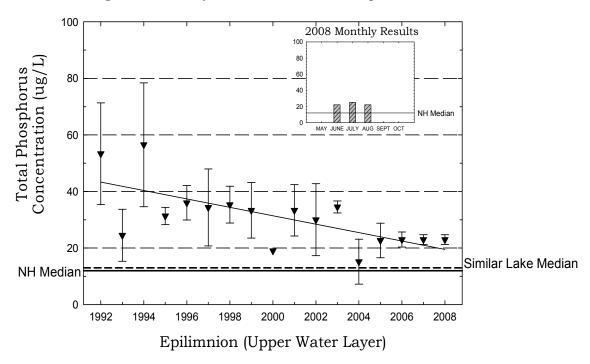
The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *remained relatively stable* from **June** to **August**.

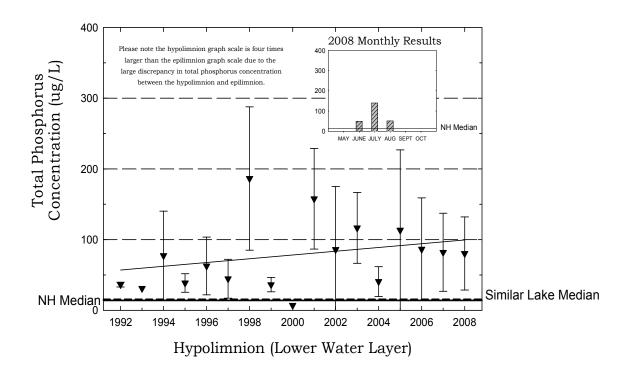
The historical data show that the **2008** mean epilimnetic phosphorus concentration is *greater than* the state and similar lake medians. Refer to Appendix D for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *increased* from **June** to **July**, and then *decreased* from **July** to **August**.

The hypolimnetic (lower layer) turbidity sample was *elevated* on the **June**, **July** and **August** sampling events (**6.54**, **30.8 and 12.9 NTUs**). This suggests that the pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the pond bottom is covered by an easily disturbed thick organic layer of sediment. When the pond bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

The historical data show that the **2008** mean hypolimnetic phosphorus concentration is *much less than* the state and similar lake medians. Please refer to Appendix D for more information about the similar lake median.


Overall, visual inspection of the historical data trend line for the epilimnion shows a *decreasing* phosphorus trend. Specifically, the mean annual epilimnetic phosphorus concentration has *improved* since monitoring began in **1992**.


Overall, visual inspection of the historical data trend line for the hypolimnion shows an *increasing* phosphorus trend since monitoring began. Specifically the mean annual concentration has *worsened* since monitoring began in **1992**.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds.

Pearly Pond, Rindge

Figure 3. Monthly and Historical Total Phosphorus Data

> pH

Table 14 in Appendix A presents the current year pH data for the in-lake stations.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The pH at the deep spot this year ranged from **5.65 to 5.80** in the epilimnion and from **5.45 to 6.0** in the hypolimnion, which means that the water is **slightly acidic**.

Due to the state's abundance of granite bedrock and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase pond pH. The pH at the deep spot, however, is sufficient to support aquatic life.

Acid Neutralizing Capacity (ANC)

Table 14 in Appendix A presents the current year epilimnetic ANC for the deep spot.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.9 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The acid neutralizing capacity (ANC) of the epilimnion (upper layer) ranged from **0.9 mg/L to 2.3 mg/L**. This indicates that the pond is **extremely vulnerable** to acidic inputs.

> Conductivity

Table 14 in Appendix A presents the current conductivity data for in-lake stations.

Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions

from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The conductivity has *increased* in the pond since monitoring began. In addition, the in-lake conductivity is *much greater than* the state median. Typically, increasing conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct a shoreline conductivity survey of the pond and tributaries with *elevated* conductivity to help identify the sources of conductivity.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

Therefore, we recommend that the **epilimnion** (upper layer) be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

Dissolved Oxygen and Temperature

Table 9 in Appendix A depicts the dissolved oxygen/temperature profile(s) collected during **2008**.

The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

As previously mentioned, the turbidity and total phosphorus concentration in the hypolimnion (lower layer) sample was **elevated** on each of the sampling events this year. Historically, the hypolimnetic dissolved oxygen concentration

has been *low* on most sampling events. This suggests that the lake bottom is composed of a thick layer of organic material that is easily disturbed. The presence of a thick organic layer on the lake bottom, which is likely comprised of decomposed plants and algae, would explain the lower dissolved oxygen concentration near the lake bottom.

> Turbidity

Table 14 in Appendix A presents the current year data for in-lake turbidity.

Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

As discussed previously, the hypolimnetic (lower layer) turbidity was *elevated* (6.54, 30.8 and 12.9 NTUs) on the June, July and August sampling events. In addition, the hypolimnetic turbidity has been elevated on many sampling events during previous sampling years. This suggests that the pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by an easily disturbed thick organic layer of sediment. When the pond bottom is disturbed, phosphorus rich sediment is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

TRIBUTARY SAMPLING

> Total Phosphorus

Table 14 in Appendix A presents the current year total phosphorus data for tributary stations. Please refer to the "Chemical Monitoring Parameters" section of the report for a detailed explanation of total phosphorus.

The phosphorus concentration in the **Mountain Rd. Inlet** samples on the **June, July** and **August** sampling events was *elevated* (77, 65, 71 ug/L), however, the turbidity was *not elevated* (1.71, 1.25 and 1.16 NTUs). It had rained approximately **0.5 inches** during the **24** prior to the **June** sampling event. It is possible that watershed wetland systems were releasing phosphorus-enriched water into the lake from tributaries that drain the wetland area. Also, rain events typically carry phosphorus laden watershed runoff to tributaries. Phosphorus sources in the watershed can include agricultural runoff, failing or marginal septic systems, stormwater runoff, road runoff, and watershed development.

⊳ pH

Table 14 in Appendix A presents the current year pH data for the tributary stations. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation of pH.

The pH of **Bower Inlet and Moutain Rd. Inlet** appears to be slightly acidic. This can be caused by the presence of humic, tannic and fulvic acids. Humic, tannic and fulvic acids naturally occur as a result of decomposing organic matter such as leaves. These acids may also cause the water to be tea colored. In New Hampshire the presence of granite bedrock and acid deposition also naturally lowers the pH of freshwaters.

Conductivity

Table 14 in Appendix A presents the current conductivity data for the tributary stations. Please refer to the "Chemical Monitoring Parameters" section of the report for a more detailed explanation of conductivity.

The **Mountain Rd. Inlet** has experienced elevated conductivity levels since monitoring began. We recommend that your monitoring group conduct a conductivity survey of tributaries with *elevated* conductivity and along the shoreline of the pond to help identify the sources of conductivity. As previously mentioned increasing conductivity typically indicates the influence of pollutant sources associated with human activities.

We recommend that your monitoring group conduct stream surveys and rain

event sampling along the tributaries with *elevated* conductivity so that we can determine potential sources to the lake.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at

http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

The **Bower Inlet** has experienced slightly decreasing conductivity levels since monitoring began. We hope to see this continue!

> Turbidity

Table 14 in Appendix A presents the current year turbidity data for the tributary stations. Please refer to the "Other Monitoring Parameters" section of the report for a more detailed explanation of turbidity.

Overall, **2008** tributary turbidity levels were *similar* to historical tributary turbidity levels.

> Bacteria (E. coli)

Table 14 in Appendix A lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present. Please refer to the "Other Monitoring Parameters" section of the report for a more detailed explanation.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

Chlorides

Table 14 in Appendix A lists the current year data for chloride sampling. The chloride ion (Cl-) is found naturally in some surface waters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are

generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

Chloride sampling was **not** conducted during **2008**.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled-out an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did a **very good** job when collecting samples this year! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify a few aspects of sample collection that your group could improve upon, as follows:

> Sample labeling: Please label your samples with a waterproof pen preferably by using a black permanent before sampling. Please label sample bottles with Lake name, station name, station depth, date and time samples were collected. Check to make sure that the ink does not wash off the bottle when exposed to water. If your association has made its own sample bottle labels, please fold over one corner of each label before

placing it on a sample bottle so that the label will not become permanently attached to the bottle. In addition, please make sure that the labels will stick to the bottles when they are wet.

> **Sample bottle volume:** Please fill each sample bottle up to the neck of the bottle where the bottle curves in. This will ensure that the laboratory staff will have enough sample water to conduct all of the necessary tests.

Please be careful to not overflow the small brown bottle used for phosphorus sampling since this bottle contains acid. If you do accidentally overflow the small brown bottle, please rinse your hands and the outside of the sample bottle and make a note of this on your field sampling sheet. The laboratory staff will put additional acid in the bottle in the laboratory to preserve the sample.

➤ **Secchi disk readings:** When measuring the transparency at the deep spot, please remember to take at least two Secchi disk readings and record these on the field data sheet. Since the depth to which the Secchi disk can be seen in the water can vary depending on how windy or sunny it is, and also on the eyesight of the volunteer monitor, it is best to have at least two people take readings. In addition, please make sure that the Secchi disk readings without the use of a viewscope are taken on the shady, non-windy side of the boat, and that Secchi disk readings with the use of a viewscope are taken on the sunny side of the boat, between the hours of 10 am and 2 pm.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-32.pdf.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-03-42.pdf.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-10.pdf.

Impacts of Development Upon Stormwater Runoff, DES fact sheet WD-WQE-7, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/aot/documents/w qe-7.pdf.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/bb/documents/bb-9.pdf.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-2.pdf.

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-4.pdf.

Watershed Districts and Ordinances, DES fact sheet WD-WMB-16, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-16.pdf.